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Abstract - A new reinforcement learning algorithm is introduced which can be applied over

a continuous range of actions. The learning algorithm is reward-inaction based, with a set of

probability density functions being used to determine the action set. An experimental study is

presented, based on the control of a semi-active suspension system on a road going, four

wheeled, passenger vehicle. The control objective is to minimise the mean square

acceleration of the vehicle body, thus improving the ride isolation qualities of the vehicle.

This represents a difficult class of learning problem, owing to the stochastic nature of the

road input disturbance together with unknown high order dynamics, sensor noise and the

non-linear (semi-active) control actuators. The learning algorithm described here operates

over a bounded continuous action set,  is robust to high levels of noise and is ideally suited to

operating in a parallel computing environment.

1.  INTRODUCTION

In this paper reinforcement learning is used on-line to improve the ride performance of an

experimental vehicle fitted with controllable suspension dampers (semi-active suspension).

A teaching signal, or critic, provides a scalar evaluation signal representing the learning

system performance. This is used to update the learning system's internal states with the aim

of improving closed-loop system performance over time.
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Compared with standard mechanical 'passive' suspensions, electro-mechanical active and

semi-active systems can offer significantly improved control of motor vehicle body

dynamics. While active systems require a source of mechanical power, such as an hydraulic

pump, semi-active systems control suspension force by dynamically varying the area in a

flow control valve within the hydraulic damper unit, and are purely dissipative [1]. However,

detailed controller design is far from straightforward; the dynamics of an actual vehicle

becomes very complex when a realistic range of frequencies is considered, typically below

30Hz for ride comfort analysis. Factors such as longitudinal suspension compliance, body

flexibility, and engine mounting degrees of freedom can be important, with the result that a

model-based controller design strategy may be very time-consuming or even ineffective in

practice. These considerations motivate the use of real-time learning of control system

design.

 Reinforcement learning benefits over other types of learning system in requiring no

dedicated training and evaluation phases of learning; instead, such systems progressively

adapt to the given environment. It has previously been applied in areas such as game playing

[2], robotics [3] and the control of power systems [4]. However the majority of

reinforcement learning algorithms available (e.g. Q-learning, adaptive heuristic critics and

learning automata) are based on discrete action sets, which is very restrictive for the present

dynamic control problem. Although several methods have been developed to overcome this

limitation, such as generalised approximation techniques [5] (where the generalisation

replaces costly training experience) and homing in techniques [6], there remains a need for a

method that can be applied over a continuous action space. Reinforcement learning is a form

of machine learning that tries to maximise a scalar reward through interaction with a

stochastic environment. The reward is more evaluative than instructional and indicates only

the degree of success the actions achieved in the environment but not which action would
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have been optimal. This differs in a fundamental way from supervised learning situations in

which the learning system is typically shown a series of input-output examples of which is

has to match.
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Fig. 1. Reinforcement Learning System.

In Fig. 1 a typical reinforcement learning system is shown. The learning sub-system sends an

action or set of actions to the environment which then returns a scalar value, via the

performance evaluation function, indicating the quality of that action. The performance

evaluation function encodes the explicit goals and objectives of the learning system and

returns a scalar value, β , indicating the quality of the applied actions, where 1 indicates

maximum reward and 0 indicates a null reward. The environment is stochastic, so actions

have to be applied many times in order to determine which action (or actions) yield the

highest mean reward from the environment. With all reinforcement learning systems a

balance has to be maintained between exploiting the information gained during learning, and

exploring the set of actions to gain more information.
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The stochastic Continuous Action Reinforcement Learning Automata (CARLA) algorithm

described below was developed as an extension of the learning automata approach [7, 8] and

can be applied across a continuous range of actions.  The algorithm is of a reward inaction

type with multiple actions being implemented in a similar manner to interconnected learning

automata, where the interconnection is through the dynamics of the 'environment', in this

case the vehicle. The general requirements for the CARLA algorithm are that it should

operate in stochastic environments,  be used on-line and be adaptable to changing

environmental conditions.

2.  DISCRETE-ACTION LEARNING AUTOMATA

Stochastic learning automata, are a form of non-associative reinforcement learning that

operate on a finite discrete action set { }x x x Xr1 2, ,� ∈  with randomised action selection.

Each action xi  has a probability pi  of selection associated with it. It is assumed that no

information about the actions is available at the start of learning and therefore the selection

probabilities are initially equal. The actions are selected on the basis of the probability

distribution, which are iteratively updated based on a performance evaluation signal β

received. Many different learning rules have been developed with varying convergence

properties; for a description of these see [8]. One of the algorithms which has been shown to

have good convergence properties is the linear reward-inaction algorithm described below.

In response to action xi  being  selected, at time step n , the probabilities are updated as given

in eqn 1.

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

p n p n n p n

p n p n n p n i j

i i i

j j j

+ = + −

+ = + ≠

1 1

1

θβ
θβ                 if   

(1)
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Here θ  is a learning rate parameter, 0 1< <θ  and β ∈ 0 1,  is the value indicating the quality

of reward received for the action, 1 indicating maximum reward and 0 indicating a null

reward.

A single learning automaton is a relatively simple unit but can be used a building block for

more complex systems with multiple actions. The effectiveness of the method derives from

the interconnection of many of the automata which interact through the environment. This

makes them suitable for distributed and intelligent control applications with the automata

operating in a decentralised yet co-ordinated manner. For a continuous action variable a

corresponding discrete action set can be created by discretizing at regular intervals; however

the speed of convergence will decreases as the number of actions increases with the initial

probabilities of selection for any action being very small.
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Fig. 2. Interconnected Automata
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The CARLA algorithm was developed as a natural extension to the above learning automata

algorithm to allow actions to be selected over a bounded continuous range.

3.  CONTINUOUS ACTION REINFORCEMENT LEARNING AUTOMATA

In this section, the general formulation of the CARLA algorithm is given. This is based on

the simple case of a single action being presented to the environment at each iteration,

however, multiple actions will typically be configured according to Fig. 2. Let the CARLA

action variable x  be a bounded continuous random variable defined over the interval

X x x= ⊂[ , ]min max 5 . The discrete probability distribution of Section 2 is then replaced, at

iteration n (where n = 0 1 2, , ... ), by a continuous probability density function ( )f x n,   which

satisfies

( ) ( )f x n dx f x n dx
X

, ,
−∞

∞

∫ ∫= = 1 (2)

and� f x n( , ) ≥ 0�∀n��∀x �

The generic pseudo-code of the CARLA algorithm then takes the following form

Initialise the probability density function to a uniform distribution

Repeat

Select an action using its probability density function

Execute action on the environment

Receive cost/reward for previous action

Update performance evaluation function β

Update probability density function

Until stopping condition

Fig. 3. Generic pseudo-code for a single CARLA
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The initial distribution is chosen as uniform:

( )f x x x
x X

, max min0
1

0
= −

∈





for 

otherwise
(3)

In this case, the random choice of  x  is obvious, [ ]x x x~ U ,min max . More generally ( )x n  needs

to be selected as a random variable based on the non-uniform distributed function ( )f x n, .

This is achieved via a uniform variable ( )z n .  Given ( ) [ ]z n ~ U ,0 1  at iteration n , the value of

the action is chosen so that

( )
( )

( )f x n dx z n
x

x n

,
min

∫ = (4)

The action ( )x n = ξ  is then applied to the environment which returns a dynamic cost or

performance index ( )J n  to the performance evaluation function that indicates the quality of

the chosen action. The current and past costs are stored in a reference set R and used to

determine the value of reward ( )β n , where

( )
( )

β n
J J n

J J
med

med

=
−
−









max ,
min

0 (5)

Jmed and Jmin are the median and minimum values of the stored costs in the reference set

respectively.  The reward ( ) [ ]β n ∈ 0 1,  relates the performance of the most recent action ( )J n

to the results obtained for past actions. A high value of ( )β n  indicates reward and a low

value punishment. To avoid problems with infinite storage and to allow the system to adapt

to changing environments, only the last m�values of costs are stored.

Based on the performance index, the probability density function ( )f x n, � is updated,

according to the rule
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( ) ( ) ( ) ( )[ ]
f x n

f x n n H x r x X
,

, ,
+ =

+ ∈



1
0

α β if 

   otherwise
(6)

where α is determined implicitly by the normalisation condition

( )f x n dx
x

x

,
min

max

+ =∫ 1 1 (7)

Here ( )H x r,  is a symmetric Gaussian neighbourhood function centred on ( )r x n=

( ) ( )
H x r

x r
, exp= −

−







λ

σ

2

22
(8)

and λ  and σ  are parameters that affect the height and width of the neighbourhood function.

They may be defined in terms of the range of actions, namely

( )λ =
−
g

x x
h

max min

(9)

σ = ⋅ −g x xw ( )max min (10)

where the speed and resolution of the learning are controlled by the two free parameters gh

and gw  respectively. If we assume the cost function is reasonably smooth over the action

space then similar actions should produce similar rewards. The function ( )H x r,  has the

effect of spreading the reward for the selected action to neighbouring actions. If convergence

occurs then the distribution at a single point obtained by the CARLA will approach that of

the neighbourhood function ( )H x r,  as shown in Fig. 4.
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Fig 4. CARLA Convergence.

Learning can take place continuously and will therefore continue to operate, even after an

optimal response has been learnt. Also the system state will not saturate at a single value

through continued reinforcement.

For implementation purposes, the value of probability density function ( )f x n,  is stored at

regular intervals ∆f  of probability density. The action / probability density co-ordinates then

approximate the probability density function with linear interpolation determining the action

value at intermediate points. With this implementation the curve is better defined at high

values of probability density which are the areas of most importance.

Each CARLA can be treated as a separate learning unit associated with a single continuous

action variable. As previously mentioned, the practical application of the CARLA involves

the multiple action interconnected structure shown in Fig. 2. This simple modular
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implementation enables multiple actions to be learnt simultaneously with interactions

obtained through the dynamics of the environment.

4.  EXPERIMENTAL STUDY

A standard passenger vehicle fitted with continuously variable controllable semi-active

dampers and wheel and body accelerometers was mounted on a servo-hydraulic four-poster

road simulator. The above learning methodology was applied to the problem of improving

the ride comfort of the vehicle with a performance objective of reducing the vertical body

accelerations. This is a stochastic control problem for a system with a large number of

degrees of freedom and significant non-linearities for example due to the complex properties

of the suspension dampers and bushes. Furthermore, the excitation from the rig actuators are

unknown to the learning system.

Four learning systems, each with three actions, were implemented, one for each damper. The

performance objective of each of the learning systems was to minimise the mean square

vertical body acceleration at the corresponding suspension mounting points. The architecture

of the learning system as applied to the vehicle suspension control problem is summarised in

Fig. 5.
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Fig. 5. System Diagram.

The following variables were used for feedback: suspension deflection (xs), wheel velocity

(vw) and body velocity (vb ) at each corner of the vehicle. The controller then commands the

desired damper force in the simple form

F k x k v k vs s s b= + +1 2 3 (11)

with the learning system being used to determine the controller parameters k k k1 2 3, , . The

specified ranges for these parameters have been based on the typical values reported in the

literature on active and semi-active suspension control [7]. The action variable of each

CARLA now corresponding to a controller parameter. This desired force is used together

with the estimated velocity across the damper to determine the control valve setting of the

damper. This can be achieved by using a previously determined set of non-linear maps

defining damper force as a function of the velocity across the damper.



12

The rig excitation was created with each of the four corner being driven independently. Each

rig actuator was driven according to a stationary random process with prescribed

displacement spectral density function ( )s f c f= ⋅ −2 5.  with c = × −6 10 6 and band-limited to the

frequency range 0.2 to 20Hz. A VAX workstation was used to drive the four poster rig with

updates to the position of the computer controlled hydraulic actuators applied at a sampling

frequency of 204.8Hz. The vehicle, a medium sized saloon car, was fitted with continuously

variable dampers and instrumented with sensors at each corner of the car. The desired

control action converted to a voltage signal is sent to a damper driver module. This converts

the signal into a pulse-width modulated square-wave current signal supplying the solenoid

valve of the corresponding damper. The pulse width modulates the damping rate and the

oscillating nature of this signal continuously vibrates the solenoid valve to prevent sticking

and to improve the dynamic response of the actuator. The sensor set at each wheelstation

comprises two piezo-resistive type accelerometers to measure wheel and body acceleration in

the range ±150 2m s  and ±20 2m s  respectively. These were rigidly mounted in the vertical

plane at each wheelhub, and on the vehicle body at the top pinchbolt of each damper. A cut

out section in Fig. 6. shows the sensor position for the front corner of the vehicle. Single-turn

rotary potentiometers, calibrated on previous rig tests [9], were also mounted at each corner

to measure the suspension deflection. The sensors were connected to a signal conditioning

module to amplify each of the transducer signals, and apply an analogue anti-aliasing Bessel

filter. The filter induces a time delay of 500µs at pass frequencies up to around 300Hz. In

order to reduce the signal conversion hardware to a single A/D and a single D/A converter a

multiplexor was employed between the signal conditioning and digital signal processor. A

previously designed Kalman filter [10] was used to provide state estimates for feedback

control.
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Fig. 6. Front Corner of Vehicle

The CARLA learning algorithm, implemented in 'C', was executed in real-time on a

486DX2-50. The resulting controller gains were sent to a TMS320C30 digital signal

processor operating at 500 Hz, which provided the state estimation, performed the closed

loop control and returned the dynamic cost. Details of how the CARLA algorithm was

implemented are given below. The learning interval of 16 seconds is necessary, not for the

speed of the learning system, but for the vehicle system dynamics. The interval was chosen

to average out the effects of input variation and to determine the average control effect to

over several cycles of low frequency body bounce acceleration.
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CARLA Algorithm

1. Set iteration n = 0;

2. Define the action set ( ) ( ) ( ) ( ){ }A n k n k n k n= 1 2 3, ,  such that k k ki i i∈ ,min ,max,  for (i = 1 2 3, , ).

3. Define ( )f k ni i ,  to be the probability density function for ki  at iteration n .

4. Initialise ( )f k ni i ,  for i = 1 2 3, ,  to a uniform distribution between the defined limits.

5. Repeat

  • Using a pseudo-random number generator for each action

select ( )z ni  for uniformly between 0 and 1. (i = 1 2 3, , )

  • Select ( )k A ni ∈  where the area under the probability density 

function is
( ) ( ) ( )f x n z n

k

k n

i
i

i

,max

,∫ =

  • Run Suspension System over a ∆  second time interval.

  • Evaluate the cost or performance index J , where

( )J n vb
t

t

=
−
∑1 2

∆ ∆
�

  • Append to R and evaluate the minimum, Jmin, and median, Jmed, values of R.

  • Evaluate ( )β n  via eqn (5)

  • Update the probability density functions ( )f k ni i ,  using eqn (6)

  • Increment iteration number n .

Fig. 7. CARLA Implementation

Parameter Values

∆ = 16 seconds

∆f  = 0.01

m  �500 (values in the reference set R)
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gw = 0.02

gh = 0.3

k1,min = 0  k1,max = 20000

k2,min = 0  k2,max = 2000

k3,min = -6000   k3,max = 0

5.  CARLA CONTROLLER PERFORMANCE

Three independent examples of the learning system were run on the rig with each example

using a different random driving input. The first two tests were each run for 2900 iterations,

which represents about 13 hours of running time; the third test was extended to 3300

iterations. The resulting controllers, denoted LC 1-3, were then tested on an independent 60

second sample of rig excitation for evaluation purposes. In Table 1 the r.m.s. body

accelerations are given as percentage reductions from a best-case constant setting (reference

passive control). Firm and Soft passive damper settings were also tested and are included in

the Table.

Percentage

Increase

Corner A Corner B Corner C Corner D

Firm 49.17 39.83 46.63 32.86

Soft -2.077 5.171 10.49 0.407

LC 1 -6.450 -5.635 -3.240 -5.985

LC 2 -5.972 -5.648 -0.793 -7.008

LC 3 -10.08 -9.413 -8.706 -13.80

Table 1. Percentage reduction in r.m.s. body acceleration. [ comparison with a reference pas-

sive damper setting. Negative values denote increased body acceleration].
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Fig. 8. A comparison of the power spectral density function for the best passive

damper setting and a learnt controller

The results indicate that the semi-active system can achieve improvements of the order of

10%, though the extra learning time for controller LC 3 may suggest that the system was still

in a process of improving its performance and longer runs may be even more beneficial.
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Fig. 9. The variation in probability density for each controller parameter.
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Fig. 8 shows the power spectral density function of a typical learnt controller and the best

passive damper setting. This indicates improvements can occur across a wide frequency

range. Fig. 9 shows how the probability density function varies over each iteration for the

controller parameters of one corner in a typical test. There is a clear trend of convergence as

the three probability functions become increasingly sharply peaked. The locations of the

peak values at the final iteration shown here were used for the parameters in controller LC1;

a similar though independent process leads to each of the LC2 and LC3 parameter sets. The

mean reduction in cost (averaged over 100 iterations) is shown in Fig. 10. The mean cost has

not completely levelled off indicating that slight further improvements in performance may

still be possible.
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6.  DISCUSSION AND CONCLUSIONS

The Continuous Action Reinforcement Learning Automata have been shown to operate

successfully in a highly stochastic environment. The learning methodology was capable of

improving the system performance despite high levels of noise on the rig input and sensors.

With each of the dampers being controlled separately, interactions occur via the vehicle's

body structure. These effects contributed to the relatively slow learning time taken, despite

the simplistic structure of the controller. This initial study has, however, demonstrated that

the methodology is practicable, and has the potential for use as a general tool for industrial

control system design.

The CARLA benefits from having relatively few free parameters, the most significant being

the height and width of the Gaussian neighbourhood functions. In fact the learning is not

overly sensitive to these parameters, although the speed of learning is affected to a small

extent. The structure of the algorithm is relatively simple, with one CARLA per variable to

be learnt. These can be easily combined to create general configurations, the

interconnections being through the dynamics of the environment. The CARLA may share the

same cost function with one overall goal or they may each use separate cost functions, to

achieve there own individual sub-goals. The simple and general structure of the algorithm

makes the technique particularly suited to distributed control applications and

implementation in parallel processing hardware.

Overall convergence rate is determined by (i) iteration time, which is constrained by the

system dynamics, and (ii) CARLA convergence rate, which is a function of the CARLA

parameters gw ,gh  as well as the environmental noise levels. It is thought that in this study

area the best opportunity for improving convergence rates lies with reducing the duration of

each iteration from the current 16 seconds. This is far from trivial however, and requires a
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more detailed assessment of the effects in the vehicle of the different control actions; this

issue is currently being studied by the authors.

The learning system, as with the learning automata methodology on which it is based, can be

used for on-line learning in stochastic environments and because of the randomised nature of

the action selection should have the potential to avoid problems caused by local minima.

More conventional controller design for such a system would have incurred very significant

overheads in the development and implementation time. Initially some form of systems

modelling would be required. The system parameter would need to be identified and these

validated on the vehicle before simulation studies were conducted. The final controller

design would then have to be separately verified on the real system hardware. The control

system developed in this study required no modelling - the system learns on the real

hardware. This feature should enable the methodology to be used for fast controller design

and system development in other areas.

The technique has been shown to be successful on a rig based system with a significant

improvement over a reference passive setting being achieved. It should be possible to extend

these techniques to allow road based learning in the near future. The complexity of the

controller structure will also be increased and methods of reducing the learning time that is

required will be also need to be addressed. The operation of the continuous learning

automata to perform the state estimation functions will also be examined to eliminate the

need for a pre-designed Kalman filter.
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