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Abstract

PID systems are widely used to apply control without the need to obtain a dynamic model. However, the performance of controllers
designed using standard on-line tuning methods, such as Ziegler}Nichols, can often be signi"cantly improved. In this paper the tuning
process is automated through the use of continuous action reinforcement learning automata (CARLA). These are used to simultaneously
tune the parameters of a three term controller on-line to minimise a performance objective. Here the method is demonstrated in the
context of engine idle-speed control; the algorithm is "rst applied in simulation on a nominal engine model, and this is followed by
a practical study using a Ford Zetec engine in a test cell. The CARLA provides marked performance bene"ts over a comparable
Ziegler}Nichols tuned controller in this application. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Despite huge advances in the "eld of control systems
engineering, PID still remains the most common control
algorithm in industrial use today. It is widely used
because of its versatility, high reliability and ease of
operation (see for example Astron & Hagglund, 1995).
A standard form of the controller is given in Eq. (1) and
the implementation is shown in Fig. 1:
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The measurable output y(t) is subject to sensor noise n(t)
and the system to disturbances d(t), both of which can be
assumed unknown. The control u(t) is a summation of
three dynamic functions of the error e(t) from a speci"ed
reference (demand) output y

3%&
(t). Proportional control

has the e!ect of increasing the loop gain to make the
system less sensitive to load disturbances, the integral of
error is used principally to eliminate steady-state errors,
and the derivative action helps to improve closed loop
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stability. The parameters K
p
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d
are thus chosen to

meet prescribed performance criteria, classically speci"ed
in terms of rise and settling times, overshoot and steady-
state error, following a step change in the demand signal.

A standard method of setting the parameters is
through the use of Ziegler}Nichols' tuning rules (Ziegler
& Nichols, 1942). These techniques were developed em-
pirically through the simulation of a large number of
process systems to provide a simple rule. The methods
operate particularly well for simple systems and those
which exhibit a clearly dominant pole-pair, but for more
complex systems the PID gains may be strongly coupled
in a less predictable way. For these systems, adequate
performance is often only achieved through manual and
heuristic parameter variation.

This paper introduces a formal approach to setting
controller parameters, where the terms are adapted on-
line to optimise a measure of system performance. The
performance measure is usually a simple cost function of
error over time, but it can be de"ned in any way, for
example to re#ect the classical control criteria listed
earlier. The adaptation is conducted by a learning algo-
rithm, using Continuous Action Reinforcement Learning
Automata (CARLA) which was "rst introduced by
Howell, Frost, Gordon and Wu (1997). The control para-
meters are initially set using a standard Ziegler}Nichols
method; three separate learning automata are then
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Fig. 1. PID controller implementation.

Fig. 2. Learning system.

employed* one for each controller gain* to adaptively
search the parameter space to minimise the speci"ed cost
criterion.

As an example, a PID controller is developed for load
disturbance rejection during engine idle. The idle-speed
control problem presents particular challenges, due to
system nonlinearities, and varied predictable and un-
predictable noise conditions, and the application has
attracted much research interest over many years. A
thorough review of the state of the art was given in
Hrovat and Sun (1997), and recent works on control algo-
rithms have included SISO robust control (Glass &
Franchek, 1999) and a combination of L1 feedforward and
LQG feedback control (Butts, Sivashankar & Sun, 1999).

In this paper, the PID algorithm is "rst tuned in
simulation, to an essentially linear engine idle model; it is
then re-examined on a physical engine in a test cell. In
both cases the throttle angle is used to regulate measured
engine speed.

2. Continuous action reinforcement learning automata

The CARLA operates through interaction with a ran-
dom or unknown environment by selecting actions in
a stochastic trial and error process. For applications that
involve continuous parameters which can safely be var-
ied in an on-line environment, the CARLA technique can
be considered to be more appropriate than alternatives.
For example, one such alternative, the genetic algorithm
(Holland, 1975) is a population-based approach and thus
requires separate evaluation of each member in the popu-
lation at each iteration. Also, although other methods
such as simulated annealing could be used, the CARLA
has the advantage that it provides additional convergence
information through probabilitiy density functions.

CARLA was developed as an extension of the discrete
stochastic learning automata methodology (see
Narendra and Thathachar (1989) or Najim and Posnyak
(1994) for more details). CARLA replaces the discrete
action space with a continuous one, making use of
continuous probability distributions and hence making
it more appropriate for engineering applications that
are inherently continuous in nature. The method has
been successfully applied to active suspension control

(Howell et al., 1997) and digital "lter design (Howell
& Gordon, 1998). A typical layout is shown in Fig. 2.

Each CARLA operates on a separate action * typi-
cally a parameter value in a model or controller * and
the automata set runs in a parallel implementation as
shown, to determine multiple parameter values. The only
interconnection between CARLAs is through the envi-
ronment and via a shared performance evaluation func-
tion. Within each automata, each action has an associated
probability density function f (x) that is used as the basis
for its selection. Action sets that produce an improve-
ment in system performance invoke a high-performance
&score' b, and thus through the learning sub-system
have their probability of re-selection increased. This is
achieved by modifying f (x) through the use of a Gaussian
neighbourhood function centred on the successful action.
The neighbourhood function increases the probability of
the original action, and also the probability of actions
&close' to that selected; the assumption is that the perfor-
mance surface over a range in each action is continuous
and slowly varying. As the system learns, the probability
distribution generally converges to a single Gaussian
distribution around the desired parameter value.

Referring to the ith action (parameter), x
i
is de"ned on

a pre-speci"ed range Mx
i
(min), x

i
(max)N. For each iter-

ation k of the algorithm, the action x
i
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the probability distribution function f
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initially uniform:
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The action is selected by
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where z varies uniformly in the range M0, 1N.
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Fig. 3. Engine idle-speed simulation model.

With all n actions selected, the set is evaluated in
the environment for a suitable time, and a scalar cost
value J(k) calculated according to some prede"ned
cost function. Performance evaluation is then carried out
using

b(k)"minGmaxG0,
J
.%$

!J(k)

J
.%$

!J
.*/
H, 1H, (4)

where the cost J(k) is compared with a memory set of
R previous values from which minimum and median
costs J

.*/
, J

.%$
are extracted. The algorithm uses a re-

ward/inaction rule, with action sets generating a cost
below the current median level having no e!ect (b"0),
and with the maximum reinforcement (reward) also cap-
ped, at b"1.

After performance evaluation, each probability density
function is updated according to the rule
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where H(x, r) is a symmetric Gaussian neighbourhood
function centred on the action choice, r"x(k):
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and g
h

and g
w

are free parameters that determine the
speed and resolution of the learning by adjusting the
normalised &height' and &width' of H. These are set to
g
w
"0.02 and g

h
"0.3 along with a memory set size for

b(k) of R"500, as a result of previous investigations
which show robust CARLA performance over a range of
applications (Howell et al., 1997, 1998; Frost, 1998).

The parameter a(k) is chosen in Eq. (5) to renormalise
the distribution at k#1,
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For implementation, the distribution is stored at discrete
points with equal inter-sample probability, and linear
interpolation is used to determine values at intermediate
positions. A summary of the required discretisation
method is given in the appendix, or for more details see
Frost (1998).

3. Engine idle-speed control

Vehicle spark ignition engines spend a large percent-
age of their time operating in the idle-speed region. In
this condition the engine management system aims to
maintain a constant idle speed in the presence of varying
load demands from electrical and mechanical devices,
such as lights, air conditioning compressors, power steer-
ing pumps and electric windows. Engines are inherently
nonlinear, incorporating variable time delays and discon-
tinuities which make modelling di$cult, and for this
reason their control is well suited to optimisation using
learning algorithms.

3.1. Model-based learning

For comparison with real engine data, and as a dem-
onstration of CARLA operation, the technique is "rst
tested on a simple generic engine model. Cook and
Powell (1988) presented a suitable structure, which re-
lates change in engine speed to changes in fuel spark and
throttle, with the model linearised about a "xed idle
speed. Fig. 3 illustrates the model, with attached PID
controller.
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Table 1
Comparison of PID parameter settings and associated cost

Ziegler}Nichols CARLA optimised

K
p

0.0115 0.0137
K

i
0.04 0.1034

K
d

0.00082 0.0021
Cost, J 216 87

Fig. 4. Controller parameter convergence.

Fig. 5. Comparing controller performance for a 10 Nm step change in
load.

Component dynamics are taken as
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where nominal system parameters are chosen: ¹
p
"0.05,

K
p
¹

p
"9000, G

p
"0.85, K

n
"1]10~4 with a combus-

tion time delay of q"0.1 s. From earlier identi"cation
work, these settings are known to be representative of the
test engine which we will consider in Section 3.2, for an
idle speed of 800 rpm with no electrical or mechanical
load.

In this paper, control is applied via modulation of the
throttle only, to minimise the change in engine speed
(*<) in the presence of load torque variations D(t).
Adopting the stability boundary method for Ziegler}
Nichols tuning, reference PID gains were obtained, and
these are recorded in Table 1.

The CARLA algorithm is applied by de"ning three
actions * one for each controller gain * with wide
search ranges, of $200% of the Ziegler}Nichols set-
tings. The optimisation was conducted by minimisation
of integrated time and squared error,

J"P
T

0

q(*<(q))2 dq (9)

over a suitably long period (¹"5 s) following an applied
10 Nm step in load at t"0. By time weighting the error
signal less emphasis is placed on the initial error, which is
largely unavoidable, and greater emphasis on reducing
long-duration oscillations.

Fig. 4 shows how the probability density functions
varied for each of the three parameters over a series of
3000 iterations. The proportional term has converged to
a value close to the Ziegler}Nichols value, but the inte-
gral and derivative terms have converged to one end of
their range. Critically though, all three terms have
converged distinctly, and it can be shown that further
learning only has the e!ect of reducing variance about
the selected values, to a minimum speci"ed by H,
p2
.*/

"(g
w
(x

.!9
!x

.*/
))2. Taking the three modal values

of the "nal distributions, the optimal controller is given
along with a cost comparison in Table 1. Note the signi"-
cant performance bene"t of the new controller * cost
has been reduced by around 60%.
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Fig. 6. System implementation.

Fig. 5 shows a comparison of responses to the load
step; the bene"ts of increased integral and derivative
action are clear, with the error approaching zero more
quickly and having lower initial overshoot in the learnt
controller. In this noise-free test however, high gains are
suitable, so we might not expect the same trends in
a physical engine test.

3.2. On-line learning

To examine CARLA in the physical test environment,
a Ford Zetec 1.8l engine was connected to a PC-based
digital control system in a test cell. Test equipment was
arranged to emulate the measurement and control that
was simulated in Section 3.1; the equipment, operation
and settings are illustrated in Fig. 6 and summarised
below.

(i) The control system consisted of a TMS320C40
digital signal processor, with Matlab, Simulink and
dSPACE software. A Simulink hardware-in-the-loop sys-
tem was designed, measuring engine speed and supplying
a continuous control output to maintain idle at 800 rpm.
PID parameters were set on-line via a Matlab program
running the CARLA algorithm; to implement the
controller, the derivative term was approximated as
s/[(1/200)s#1].

(ii) A pulse-width modulated voltage was generated
from the PC control signal, and applied to the engine air
bypass valve.

(iii) The engine management module was connected to
a proprietary development computer, in order to over-
ride standard idle management. Spark retard was "xed at

133 before TDC, and fuelling set to vary with mass air
#ow only, with no exhaust oxygen control. The air by-
pass valve lead was attached to a dummy load.

(iv) The alternator was attached to a low-resistance
(0.2 )) load with its "eld voltage switched via a power
ampli"er, by the PC/DSP control system.

For each learning iteration, new PID gains were set
and allowed to settle before a 400 W load was switched
on for 4 s and then switched o!. If during the test the
control gains invoked an unstable engine response* de-
tected by *<'200 rpm* the system was stabilised by
resetting the control parameters to Ziegler}Nichols
values, and the iteration was aborted. The cost was then
evaluated according to time and speed error after both
transients, using a record of engine speed sampled at
1 kHz:

J"
2000
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k/0
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k
(*<

k
)2#

6000
+

k/4000

(t
k
!4)(*<

k
)2.

After 1500 iterations * an on-line test of just over 4 h
* the cost had settled, and two of the three probability
distributions had converged. The cost * "ltered using
a 100 point moving mean* is shown in Fig. 7, and the
probability distributions are given in Fig. 8.

Again the P and D terms are distinct, with modal
values K

p
"0.0028, K

d
"3.48]10~4. Interestingly, the

integral term is not well de"ned* the distribution indi-
cates two candidate parameter ranges, with little cost
di!erence between them. Here we choose K

i
"0.0019,

which is a modal peak from the wider of the two ranges.
The choice is nominal, but selecting from the wider range
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Fig. 7. Mean cost reduction as a result of learning.

Fig. 8. Probability density function variation about Ziegler}Nichols
values.

we might reasonably expect a more robust control solu-
tion. The performance bene"t of the learnt controller is
shown separately for the load-on and load-o! switches,
in Fig. 9. Note the high amplitude disturbance process at
the engine "ring frequency of 27 Hz. Compared with the
engine fundamental response frequency of around 1 Hz,
this is one complexity of the plant which may explain the
lack of convergence in K

i
.

4. Concluding remarks

Whilst it is recognised that the Ziegler}Nichols com-
pensator is not optimised for the same criteria, the learnt
controller's performance is excellent, with very di!erent
control gains achieving signi"cant cost bene"ts. Also,
from this simple study and given the #exibility of
CARLA, it seems likely that the system's scope can be
extended. Restricting discussion to the engine idle ap-
plication, feedforward control is a good candidate; some
engine loads can be anticipated (e.g. air conditioning
pump demands), and CARLA might usefully be applied
to parametrise a model for feedforward control under
expected load conditions.

The control algorithm itself can also be extended* for
example by considering full state feedback; CARLA has
already been successfully employed in this way for opti-
mising suspension control. More informally, gains could
be optimised for multiple feedback paths in a general
classical controller; in addition to engine speed, manifold
pressure and mass air-#ow may be measurable, and
spark and fuelling actuation could be introduced. The
method would also have similar applications in the wider
remit of engine management.

One notable disadvantage of learning is its speci"city
to the individual test environment; plant variations can

have signi"cant implications for robustness. Again, po-
tential solutions exist however* for example the learning
algorithm could be implemented on-line in service. By re-
stricting gain ranges, it should be possible to slowly adapt
to individual plant variations throughout service life.

In summary, the continuous action reinforcement
learning automata has been successfully applied to deter-
mine PID parameters for engine idle-speed control, both
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Fig. 9. Resulting improvement over Ziegler}Nichols.

Fig. 10. Re-sampling on the linearly interpolated probability density
function.

in simulation and in practice. The technique does not
require a priori knowledge of the system dynamics, and it
provides optimised control of complex nonlinear sys-
tems.

Appendix A

In order to implement CARLA, the probability distri-
butions f

i
must be stored and updated at discrete sample

points. The most e$cient data storage can be achieved
using equal inter-sample probability rather than equal
sampling on x

i
, but this is at some computational ex-

pense, as the sampled vector x
i
must be rede"ned after

each iteration k, according to the updated distribution
f
i
(x

i
, k#1).

The data management is carried out by "rst executing
the algorithm as described in Section 2, but using a"1
and evaluating Eqs. (5)}(7) at the N current sampled
points x

i
(k). A new set of sample points x

i
(k#1) is then

selected sequentially from x
i
(min) to x

i
(max); with regard

to Fig. 10 (and dispensing with the subscript i ),
x
1
"x(min), x

N
"x(max) and intermediate samples are

de"ned for j"1, N!1 by the following:

a
j`1

"

1!A
j

N!j
, (A.1)

0.5[x
j`1

(k#1)!x
j
(k#1)]

][ f (x
j`1

, (k#1))!f (x
j
, (k#1))]"a

j`1
, (A.2)

A
j`1

"A
j
#a

j`1
. (A.3)

Here a
j

refers to the jth intersample probability, and
A

j
records the cumulative re-sampled probability at

j (A
1
"0). In each case, Eq. (A.2) is solved for x

j`1
(k#1)

by interpolating f (x
j`1

, (k#1)) between known values
on f (x

j
, k#1), and solving the resulting quadratic equa-

tion. The sequential re-calculation of target intersample
probability* Eq. (A.1) * prevents cumulative interpo-
lation errors from corrupting the probability distribution
function as it develops with iterations. This algorithm
was used successfully in the paper using the relatively
small sample set N"100.
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