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Abstract— DC Motors are ubiquitous throughout many 
industries and consumer products. Today’s vehicles have 
upwards of x controlling windows, mirrors seats and headlights 
and steering. With electric vehicles this is extending to the drive 
itself. In this paper, we propose an approach for fault detection 
and motor prognosis. An assessment of the faults and/or wear of 
a DC motors (brushtype or brushless, permanent magnet or 
wound excitation) can be made by monitoring the mean and 
variance of the motor current at a given voltage. This approach 
has the benefit of low computational overheads. An on-line 
estimate of the variance can also be obtained without the need for 
batch sampling. It is demonstrated how this approach can be 
used to determine the health status of a motor. Finally, we use the 
approach to predict the remaining useful life of a motor.  
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I. INTRODUCTION 

DC Motors provide the driving force for many of today’s 
consumer products. They are used in automobiles for 
controlling windows, windscreen wipers and increasingly 
electric power assisted steering. The failure modes can be both 
mechanical and electrical. Typical faults are both mechanical 
and electrical such as bearing failure; brush and commutator 
wear and loss of magnetic flux. In many situations motor repair 
is not seen as cost effective and the replaceable item is the 
motor itself. Several techniques have been developed to 
determine these faults such as Fourier and wavelet transforms 
[Moseler and Isermann 1998, Zanardelli & Strangas 2003] 
however these rely on fast sampling rates and complex signal 
processing techniques 

 [Nandi 1999] provides a review of condition monitoring 
and fault diagnosis approaches for electrical machines. 

Motor Current Signature analysis (MCSA) is a widely used 
too for condition monitoring of electrical machines. It has 
been applied to the detection of a number of different faults in 
the bearings, stator, and eccentricies of induction motors. The 
technique is a frequency response method that can isolate the 
fault to the specific cause.  
 
Motor faults, for instance winding short- or open- circuit, 
magnet(s) demagnetization, brush / commutator wear, 
mechanical rotor eccentricities (bent rotor or damaged 
bearings), will affect the performance and life of a motor. 
However, in many situations it is only necessary to determine 
the fault to the line replaceable unit and is not necessary to 

root cause the fault to the level of the specific fault. In this 
paper we introduce a technique for determining faults in DC 
motors based on statistical properties of the current waveform. 
We also show how this technique can be used as a prognostic 
to determine the motor state of health and the remaining useful 
life of the component. 
 

The paper is organized as follows. In Section II several of 
the fault modes of a DC motor and described and the effect on 
the current waveform is shown. Section III describes how the 
current variance can be calculated on-line and used to 
determine the fault severity. Section IV presents some 
accelerated aging tests and how we can use this information to 
determine a prognosis of the RUL of a DC Motor. Finally, the 
paper concludes with a summary in section VI.  

II. MOTOR FAULTS 

Figure 1 shows an example of uneven brush wear of a 
motor. Figure 2 shows a normally flat commutator has been 
worn down.  This motor damage may be because of 
manufacturing quality, high operating voltage or other factors 
and may not be immediately apparent in the motors 
performance.  

 

 
Figure 1. Example of Brush Wear on a DC Motor 
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Figure 2. Example of Commutator Wear on a DC Motor 
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 Figure 3.  Current waveform for a healthy motor 
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Figure 4.  Current waveform for an aged DC Motor with brush 

and commuator wear. 
 

If we compare the current profile of a healthy DC motor to 
that of one where we have worn brushes the waveforms look 
different. For a new motor (after bedding in) has a sinusoidal 
appearance as in Figure 3. The current is sinusoidal as the 
brushes change from one commutator segment to the next. For 
the worn motor, as shown in Figure 4, distortions appear as the 
contact between the brushes and the commutator is lost.  

III. VARIANCE ESTIMATION 

The current variance is a measure of the amount of 
variation of the current. Consider a waveform to describe the 
current given by, a sinusoid with a DC offset  and zero 
mean, white noise ,  

 

The variance of is given by . Note that this is only a 
function of the amplitude of the sinusoid not the frequency. It 
is also invariant to the constant offset  on the signal.  

Figure 3 is better approximated by  

A  

The eccentricity is captured by the . In this 
case the variance is  

If the eccentricity is 10% of the value of A then the 
variance is 1% affected. Gaussian white noise with st.dev 10% 
of A gives a variance of 2% 

Variance has many benefits over other techniques such as 
wavelets and Fourier transforms, these include:  

 Computational simplicity  
 The variance is not a function of motor speed.  
 The variance is affected by the amplitude and the 

shape of the waveform. 
 St. deviation squared 
 No requirements of fast sampling or complex signal 

processing tools (FFTs, Wavelets) 
 It is a non-negative quantity so can applied directly be 

used as a performance function. 
 

The basic definitions of variance can be found in any standard 
probability and statistics book [for instance Montgomery 
1994]. The variance of the signal is given by 
 

 
 
where the mean is 
 

 
 
Sampling this signal we can obtain an unbiased sample 
variance using  
 



 
 
with a sample mean of 

 
 

On-Line Variance Estimation  

The estimate of the variance of the current signal can be 
obtained off-line by sampling the motor and calculating the 
(sample) variance for a batch of data. This can be repeated at 
regular intervals to determine how the variance changes. 

Several approaches have been developed to obtain an estimate 
of the variance on-line moving [West 1979, Chan 1979].  

Consider the definition of variance. For a random variable , 
with expected value (mean) defined as , 

 

The variance is the expected value of the squared difference 
between the variable and its mean value. The mean or expected 
value can be approximate obtained online by a low-pass filter, 
so the above equation can be implemented as shown in figure 
5. 

 

 

Figure 5. Online Variance Estimation of Current 
 

Expanding the variance term gives 
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The variance is equal to the mean of the square minus the 
square of the mean. This can be implemented in the same 
manor using low-pass filters as shown in Figure 6, but it less 
computationally efficient requiring an additional squared term. 
 
 

 

 
Figure 6. Online Variance Estimation of Current 

 

In this paper we therefore considered the computationally 
simpler approach using low pass filters shown in Figure 5.  
First an exponentially weighted moving average is used to 
estimate the mean current value  
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The estimate of the mean is removed from the current signal. 
The result is then squared and used to calculate an 
exponentially weighted moving variance 
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The resulting approximate variance estimate can be tuned 
using the two parameters . These are used to determine 
how fast changes in the variance can take places. 

One important aspect is that the sampling rate should be a non-
integer multiple of the motors speed, otherwise the waveform 
would always be sampled at the same positions in the current 
waveform. 

IV. DIAGNOSIS & PROGNOSIS 

An accelerated aging experiment was conducted for a DC 
motor. The variance of the current signal was measured at 
regular sample intervals for a DC motor. The motor was 
subjected to a constant voltage above the design specification 
of the motor to accelerate the aging process. Figure 6 shows 
the results obtained in blue. The first 100 samples are not 
shown since the motor was still in a bedding period. As can be 
seen the variance of the current remains low until around 900 
samples when it starts to increase. The experiment was run for 
2100 sample durations with no loss of performance of the 
motor observed. 
  
The variance of the current can be used to diagnose the motor 
state of health by dividing the current ration into different 
regions. An estimate of the motors health can then be 
determined by observing which region the value of the current 
variance falls. Several values would need to be obtained 
because the variance estimate can be seen to fluctuate.  
 



 
Figure 6. Current variance of DC Motors  

during accelerated aging tests 
 

A method is developed below to formalize this. This method 
is generic in the sense it can be applied to any signal with any 
number of health states  
 
First the region of the current variance is divided into different 
operating regions. For example with 5 regions we have 
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A discrete probability function is defined over these regions. 
The probability represents a health assessment estimate that 
the motor is operating in that region. For instance, a new 
motor will have the initial distribution set to [1,0,0,0,0] since 
the current variance will be in region 1. 
 
The probabilities are updated each iteration interval t: 
 
If the current variance is in the range of the ith health state then 
 

 
 
Otherwise  
 

 
 
Also the constraint 
 

 
 
Applying this system to the data in figure 6, with the regions 
given by , , and 

. The results are shown in figure 7. As can be seen the 

system remains in Region 1 and then gradually transitions to 
higher regions as the motor degrades. The motor degradation 
as transitioned from Region 1 to Region 3 by the end of the 
test.  
 

 
 

Figure 7 Health status regions for DC Motor  
 

 
Figure 8. DC-Motor Fault Diagnosis & Prognosis Algorithm 

 
While the above can be used as an indicator of the health of a 
DC Motor and can even be used to determine that the motor is 
near the end of its life it does not provide indication of the 
remaining useful life. This will be discussed in the next 
section. 

V. REMAINING USEFUL LIFE 

To estimate the remaining useful life from the accelerated 
aging test results we need a way of mapping from the 
accelerated aged data to that obtained on the actual motor 
whose life you are trying to estimate. 
 
An approximate model is fitted to the accelerated aging data, 
shown in Figure 6. The data gives no indication of failure until 
around sample 900 where the variance grows. An exponential 
curve was fitted to the data from that point using standard 
regression techniques.  
 

 
 
Where X is the current sample. K was found to be 0.00374. 
 
The aim is to use the model to determine the transition time 
from one region to another. We record the time when the 
motor transitions from region 1 to region 2 and from region 2 
to region 3. We now know how long the motor was in region 2 



for the actual motor and can ratio this against the test data. We 
can now extrapolate using the model to give an indication of 
how long it will take for the variance to get to a level that we 
consider to be the end of life. 
 

VI. CONCLUSIONS 

 
In this paper, it has been shown that by monitoring the 

mean and variance of the current, at a given voltage, an 
assessment of the electric machine’s health (appearance and 
severity of faults & wear) can be made. The progression of the 
mean and variance features can also be fed into a health state 
estimator which can give an indication of remaining useful 
life. 

 
This paper has shown: 
 
1. Variance of current can be used as an indicator of the 

state of health of a DC Motor. It can also be used to as 
a prognosis and for remaining useful life of a dc motor. 
 

2. A simple method to estimate (exponentially weighted 
moving) variance on-line using low pass filters. 

 
3. A probabilistic method for determining the current 

health status of a motor that can be scaled to include as 
many different health regions as required. 

 
4. An accelerated aging test for a dc motor 

 
5. A method to use the accelerated aging tests and the 

health regions to determine the remaining useful life of 
a dc motor. 

 
This single measure should not be used in isolation but 

combined with other indicators of motor health. Changes in 
variance of the current signal may be caused by external 
components connected the motor such as the gear box or to 
changes in the applied load. Parameter estimation can be used 
to determine changes in the motor resistance and back emf. 
This can also be done online and does not require high 
sampling rates. This approach has been patented [M.N. 
Howell et al 2015]. 

 
 

REFERENCES 
 

[1] Donald E. Knuth (1998). The Art of Computer Programming, volume 2: 
Seminumerical Algorithms, 3rd edn., p. 232. Boston: Addison-Wesley. 
 

[2] B. P. Welford (1962)."Note on a method for calculating corrected sums 
of squares and products". Technometrics 4(3):419–420. 

 
[3] D. H. D. West (1979). Communications of the ACM, 22, 9, 532-535: 

Updating Mean and Variance Estimates: An Improved Method 
 

[4] Chan, Tony F.; Golub, Gene H.; LeVeque, Randall J. (1979), "Updating 
Formulae and a Pairwise Algorithm for Computing Sample Variances.", 

Technical Report STAN-CS-79-773, Department of Computer Science, 
Stanford University, 
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-
773.pdf. 

 
[5] Terriberry, Timothy B. (2007), Computing Higher-Order Moments 

Online, http://people.xiph.org/~tterribe/notes/homs.html 
 

[6] Pébay, Philippe (2008), "Formulas for Robust, One-Pass Parallel 
Computation of Covariances and Arbitrary-Order Statistical Moments", 
Technical Report SAND2008-6212, Sandia National Laboratories, 
http://infoserve.sandia.gov/sand_doc/2008/086212.pdf 

 
 

[7] Choi, Muenkeun; Sweetman, Bert (2010), Efficient Calculation of 
Statistical Moments for Structural Health Monitoring 
 

[8] V Kreinovich, H.T. Nguyen,  B. Wu, On-Line Algorithms for 
Computing Mean and Variance of Interval Data, and Their Use in 
Intelligent Systems,  

 
[9] Montgomery, D.C. and Runger, G.C.:Applied statistics and probability 

for engineers, page 201. John Wiley & Sons New York, 1994. 
 

[10] O. Moseler, R. Isermann, Model-based Fault Detection for Brushless 
DC Motor Using Parameter Estimation, IEEE 1998. 
 

[11] W.G. Zanardelli, E.G. Strangas, H.K. Khalil, J.M. Miller, Wavelet-
Based Methods for the Prognosis of Mechanical and Electrical Failures 
in Electric Motors, 2003. 

 
[12] W. G. Zanardelli, E. G. Strangas, H. K. Khalil, and J. M. Miller, “The 

Use of Wavelet Analysis for the Prognosis of Failures in Electric 
Motors,” IEEE International Symposium on Diagnostics for Electrical 
Machines, Power Electronics and Drives, pp. 591-596, Sep. 2001. 

 
[13] M.N. Howell, P.A. Kallappa, A.Omekanda,  DC-motor and fuel pump 

faults and brush-wear prognosis, US Patent No. 9,097,767, Issued Aug. 
2015.   

 
 
 
 
 
 
 


